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Abstract
In early work, March and Murray gave a perturbation theory of the Dirac
density matrix γ (r, r′) generated by a localized potential V (r) embedded in
an initially uniform Fermi gas to all orders in V (r). For potentials sufficiently
slowly varying in space, they summed the resulting series for r′ = r to regain the
Thomas–Fermi density ρ(r) ∝ [µ − V (r)]3/2, with µ the chemical potential
of the Fermi gas. For an admittedly simplistic repulsive central potential
V (r) = |A| exp(−cr), it is first shown here that what amounts to the sum of the
March–Murray series for the s-wave (only) contribution to the density, namely
ρs(r, µ), can be obtained in closed form. Furthermore, for specific numerical
values of A and c in this exponential potential, the long-range behaviour of
ρs(r, µ) is related to the zero-potential form of March and Murray, which merely
suffers a µ-dependent phase shift. This result is interpreted in relation to the
recent high density screening theorem of Zaremba, Nagy and Echenique. A
brief discussion of excess electrical resistivity caused by nonlinear scattering in
a Fermi gas is added; this now involves an off-diagonal local density of states.
Finally, for periodic lattices, contact is made with the quantum-mechanical
defect centre models of Koster and Slater (1954 Phys. Rev. 96 1208) and
of Beeby (1967 Proc. R. Soc. A 302 113), and also with the semiclassical
approximation of Friedel (1954 Adv. Phys. 3 446). In appendices, solvable
low-dimensional models are briefly summarized.

PACS number: 31.15.Bs

1. Background and outline

In early work, March and Murray [1, 2] gave a perturbation theory of the Dirac density matrix
γ (r, r′) to all orders in the localized scattering potential V (r) introduced into an originally
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uniform three-dimensional Fermi gas. These authors obtained the electron density ρ(r) as the
diagonal limit of their density matrix perturbation theory, and demonstrated that, when V (r)
varied sufficiently slowly in coordinate space, their infinite series could be summed to yield
the Thomas–Fermi nonlinear relation ρ(r) ∝ [µ − V (r)]3/2, µ being the chemical potential
of the Fermi gas.

Very recent work by Zaremba et al [3], for a potential λV (r) into which a coupling constant
λ is introduced, has yielded a formally exact expression for ∂�ρ(r, Ef , λ)/∂λ with Ef = µ

denoting the Fermi energy of the electron gas, in terms of the Green function G(r, r′, E)

generated by λV (r), where �ρ = ρ(r, Ef ) − ρ0, with ρ0 the constant electron density. Of
course, it is well known (see, for example, Jones and March [4]) that the Dirac density matrix
γ (r, r′, E) is related to the Green function by

∂γ (r, r′, E)

∂E
= 1

π
Im G(r, r′, E). (1.1)

As set out explicitly below in equation (5.1), the Zaremba, Nagy and Echenique (ZNE) result
involves Im(G2), and hence the real part of G is also required. In an appendix, ImG and ReG
are connected via a Kramers–Krönig-type relation, which is given explicitly in the free-electron
limit.

Motivated by the ZNE study, we have sought solvable, if somewhat simplistic, models.
Thus, in section 2 immediately below, we study analytically a central repulsive exponential
potential. Reverting to the early investigation of March and Murray [1], we utilize their
treatment of central potentials to study analytically the s-wave component ρs(r, E) of the
density generated by such an exponential potential. Some contact can then be established with
the ZNE result. While dealing with localized potentials in a Fermi gas, we shall also treat in
section 3 the excess electrical resistivity caused by a central potential V (r). This, as will be
emphasized, involves only the imaginary part of the Green function (and now at the Fermi
level) displayed already in equation (1.1), and we stress is also intimately related to stopping
power (see the review by Echenique et al [5]).

Then, more briefly, we shall consider such localized potentials in periodic metal lattices
in section 4. Two exactly solvable quantum-mechanical models fit, rather naturally, into the
framework of the present paper. These are due to Koster and Slater [6] and to Beeby [7]
respectively. They concern again the Kramers–Krönig-type relation between Im G and Re G,
though in fact they both finish up with the Hilbert transform of the integrated density of states
N<(E) as a major component of the displaced electron density due to the perturbation V (r).
Section 5 constitutes a summary, plus some proposals for directions in which further studies
may prove fruitful. In an appendix, low-dimensional Fermi gases are referred to, again in the
context of admittedly simplistic model potentials.

2. Local density of states for central repulsive exponential potential

March and Murray [1] gave a partial differential equation for the lth partial wave component,
ρl(r, E), of the total density of electrons at r lying below energy E, say ρ(r, E). Putting l = 0
in their equation (4.12), one can remove their energy integration by considering the local
density of s-states:

Ns(r, E) = ∂ρs(r, E)

∂E
(2.1)

to obtain the following third-order ordinary differential equation for Ns(r, E) :

1

8

∂3

∂r3
(r2Ns) − 1

2

∂V (r)

∂r
(r2Ns) − V (r)

∂

∂r
(r2Ns) + E

∂

∂r
(r2Ns) = 0. (2.2)
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After some investigation, we obtained a general solution of equation (2.2) for the central
repulsive exponential potential

V (r) = |A| exp(−cr) (2.3)

in terms of Bessel functions K and I as

Ngeneral
s (r, E) = C1

K2(2ik/c, [8V (r)]1/2/c)

r2
+ C2

I 2(2ik/c, [8V (r)]1/2/c)

r2

+ C3
K(2ik/c, [8V (r)]1/2/c)I (2ik/c, [8V (r)]1/2/c)

r2
(2.4)

where E = k2/2 and now V (r) is written for the exponential potential (2.3). Here, 2ik/c is
the order of the Bessel function. It is a straightforward, if somewhat lengthy, matter to verify
by direct substitution of equation (2.4) into the differential equation (2.2) that it is indeed a
solution.

Some studies show that I in equation (2.4) is playing the role of an ‘irregular’ solution of
Bessel’s equation, and that the physical solution has the form

Ns(r, E) = C1
K2(2ik/c, [8V (r)]1/2/c)

r2
. (2.5)

As a numerical illustration, figure 1 shows plots of Ns(r, E)/C1 for three values of
k = √

2E, and for V (r) in equation (2.3) specified by |A| = 120 and c = 5.

2.1. Comparison of Ns(r, E) with free-field form given by March and Murray

We have noted that the free-field form of Ns(r, E) given by March and Murray [1], namely

N(0)
s (r, E) = 1

4π2r2k
[1 − cos(2kr)] (2.6)

in the limit of r large, is closely related to the shapes of the three solid curves shown in
figure 1. Indeed if a phase shift, δ0 say, is introduced, then the agreement of the free-field
(V (r) = 0) form (2.6) with the exact result (2.5) is very close, the scale of the local density
of states being given correctly when the constant in equation (2.5) is chosen to be inversely
proportional to k.

2.2. Relation to the ZNE theorem

We comment here on the relation of the above findings to the ZNE theorem. First of all, the
free-field form ρ(0)

s (r, E) is clearly extremely relevant: a consequence of the ZNE result in
the limit of large Fermi energy. However, the phase shift δ0 is required to obtain the fully
quantitative asymptotic agreement at large r shown in figure 1, when A and c are chosen as
indicated.

3. Excess electrical resistivity created by central potential V (R) in a Fermi gas

Having discussed at some length an analytical model of the s-wave component of the local
density of states, we want in this section to summarize how the excess electrical resisitivity,
�R say, can be written in terms of the quantities V (r) and the off-diagonal density of states
∂γ (r, r′, E)/∂E evaluated at the Fermi energy. One of us [8] took the early work of Huang
[9], who expressed �R in terms of the phase shift δl(kf ) at the Fermi level for the lth partial
wave. A relation of Gerjuoy [10] (see also [11]) was then employed to show that �R was
proportional to a force-force correlation function 〈F ·F〉, with known proportionality constant,
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Figure 1. (a)–(c) Local density of s-states Ns(r, E)/C1 for the repulsive exponential potential
V (r) = |A| exp(−cr) with |A| = 120 and c = 5, for three values of k = √

2E. The free-field form
N

(0)
s (r, E) = [1 − cos(2kr)]/4π2r2k, in the limit of r large, with a phase shift δ0 and a prefactor

as shown, gives the solid curves.
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where 〈F ·F〉 is given in terms of the localized (spherical) potential V (r) and the Dirac density
matrix γ (r1, r2, E) by

〈F · F〉 =
∫

dr1 dr2
∂V (r1)

∂r1

∂V (r2)

∂r2

[
∂γ (r1, r2, E)

∂E

]2

Ef

. (3.1)

Such a formula, but with spherical symmetry on V (r) relaxed, in fact goes back to Rousseau
et al [12], who derived it for liquid metals. The major merit there is that the electrical resistivity
is immediately obtained to O(V 2) by putting γ equal to its Fermi gas counterpart, namely γ0

given by

γ0(r1, r2, Ef ) = k3
f

π2

j1(kf |r1 − r2|)
kf |r1 − r2| : kf = (2Ef )1/2 (3.2)

where j1(x) is the first-order spherical Bessel function (sin x − x cos x)/x2.

As a simple example of equation (3.1), let us assume that we can neglect all but s-wave
scattering to find

〈F · F〉s-wave only =
∫

dr1 dr2
∂V (r1)

∂r1

∂V (r2)

∂r2

[
∂γs(r1, r2, E)

∂E

]2

Ef

. (3.3)

For the exponential potential of section 2, ∂γs/∂E can be expressed in terms of Bessel
functions, to yield the excess resistivity as an explicit integral involving merely Bessel and
exponential functions. The scaling properties can then be extracted to yield

〈F · F〉s-wave only ∝ �Rs(|A|, c, Ef ). (3.4)

In the limit of c large, we expect the integration in equation (3.3) to be dominated by small
r1 and r2 and then �Rs ∝ [|A|√Ef c−2]2 is the desired scaling property. But more generally,
using an off-diagonal generalization of equation (2.5), we find

〈F · F〉s-wave

C2
1

=
√|A|

c
g

(√
Ef

c
,

√|A|
c

)
(3.5)

reducing the left-hand side of this equation to a function of just two variables
√

Ef /c and√|A|/c.
Without the ‘s-wave only’ simplification, it is of interest to stress that the excess resistivity

�R only involves the imaginary part of the Green function G(r1, r2, E + iε) generated by the
potential V (r), in contrast to examples of the local density of states in periodic lattices, to
which we now turn.

4. Two models of defects in a periodic lattice

4.1. Koster–Slater model

Following Koster and Slater [6], we first write the analogue of the Schrödinger equation for
the scattered wavefunction ψk(r) in terms of the complete set of Bloch wavefunctions φmk(r)
of the unperturbed problem, m being a band index and the wave vector k lying in the first
Brillouin zone. The precise form of the integral equation is then

ψk(r) = φmk(r) +
∑
m,k′

∫
φ∗

mk′(r)φmk′(r′)V (r′)ψk(r′)
E − Emk′ + iε

dr′. (4.1)

Of course, to solve this equation exactly, one must take some model for the defect potential
V (r).
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The model of Koster and Slater, though somewhat formal, has the considerable merit that
it reduces the scattering problem posed by equation (4.1) to one band, by making an admittedly
drastic assumption involving the impurity potential V (r). To formalize their theory, we assume
the average of V (r) between Wannier functions wn(r − Rj ) centred on lattice sites Rj is
given by ∫

wn(r − Rj )V (r)wn′(r − Rj ) dr = Vnnδnn′δ(Rj−R0) (4.2)

where the impurity is taken to be at the site R0. Then, since the presence of δnn′ in
equation (4.2) shows that the impurity potential does not couple different bands one can
expand the perturbed wavefunction in equation (4.1) as

ψk(r) =
∑
Rj

u(Rj )wn(r − Rj ). (4.3)

It is then straightforward to show that u(R0) is determined by the density of states n(E) in the
one band n now remaining:

u(R0) = exp(ik · R0)

[1 − VnnF (E)] + iπVnnn(E)
. (4.4)

The values of u at other lattice sites than the impurity sites can also be computed.
What we want to emphasize here is the central role of the Hilbert transform F(E) of the

one-band density of states n(E) of the unperturbed lattice

F(E) = P
∫

n(s)

E − s
ds (4.5)

where P denotes the principal value. Dawber and Turner [13] apply the above model to
metallic Cu but we shall not go into further detail here.

4.2. Beeby model of a lattice vacancy

We turn to a second ‘model’ of a vacancy in, say, a metallic crystal such as face-centred-cubic
(close-packed) copper. A great simplification, as emphasized by Beeby [7], occurs if we:

(1) start out from a periodic potential modelled as a sum of non-overlapping muffin-tin
potentials;

(2) approximate the vacancy by simply removing a muffin-tin potential from the site at which
the vacancy is created.

In practice, this is evidently an over-simplistic model, which will eventually need to be refined
by (i) allowing for electron redistribution around the vacancy in a self-consistent manner and
(ii) accounting for relaxation of the atoms surrounding the vacancy.

Beeby then develops a fully nonlinear scattering theory for the electron density displaced
around the vacant site in terms of quantities which, at least in principle, are available from
Korringa–Kohn–Rostoker calculations on the perfectly periodic lattice [14, 15]. For present
purposes, we note, for comparison with the Koster–Slater impurity model, a simple example
given by Beeby. He derives a now approximate (one-band-like) consequence of his model for
the local density of states

σ(r, E) = ∂

∂E
n(r, E) (4.6)

where the energy dependence of σ(r, E) is subsumed into

σ(r, E) = f (r)
n(E)

F 2(E) + π2n(E)
(4.7)
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where f (r) is independent of energy. As in the Koster–Slater model, a crucial ingredient is
the Hilbert transform F(E) of the density of states n(E) of the host lattice. Here we have the
‘fingerprints’ of the Kramers–Krönig-like relation between the imaginary and real parts of the
Green function emphasized earlier (see also appendix C).

5. Semiclassical limit of slowly varying potentials V (R)

Let us take as starting point the formally exact expression of Zaremba, Nagy and Echenique [3]
(ZNE) for the variation of the ‘displaced’ electron density ρ(r, Ef )−ρ0(Ef ) ≡ �ρ(r, Ef , λ)

in an originally uniform electron gas of density ρ0. The ZNE result is explicitly

∂�ρ(r, λ)

∂λ
= 1

π

∫
dr′ V (r′)

∫ ∞

Ef

dE Im [G(r, r′, E + iε)G(r′, r, E + iε)] (5.1)

for the one-body potential λV (r) inserted into the originally uniform electron gas of density
ρ0. While V (r) in equation (5.1) is by definition independent of λ,G is the Green function
generated by switching on the potential λV (r) to the free-electron Green function G0. In three
dimensions,

G0(r, r′, E + iε) = exp(i
√

2E|r − r′|)
|r − r′| . (5.2)

One then regains the March–Murray first-order result for the linear response function
F(|r − r′|, E):

∂�ρ(r, λ)

∂λ

∣∣∣
λ=0

=
∫

dr′ V (r′)Fλ=0(|r − r′|, E) (5.3)

where

Fλ=0(|r − r′|, E) = j1(2
√

2E|r − r′|)
|r − r′|2 . (5.4)

This prompts the observation that the nonlinear response function Fλ(r, r′, E) for the quantity
∂�ρ(r, λ)/∂λ on the left-hand side of equation (5.1) is given by

Fλ(r, r′, E) = 1

π

∫ ∞

Ef

dE Im [G(r, r′, E + iε)G(r′, r, E + iε)]. (5.5)

In the semiclassical limit, one must regain (for the unperturbed system as a uniform electron
gas in three dimensions)

�ρT F (r, λ) = 8π

3h3
(2m)3/2[E − λV (r)]3/2 (5.6)

or
∂�ρT F (r, λ)

∂λ
= −4π

h3
(2m)3/2V (r)[E − λV (r)]1/2. (5.7)

Doing the integral over λ between zero and one yields, from equation (5.7):

�ρT F (r) = −4π

h3
(2m)3/2V (r)

∫ 1

0
dλ[E − λV (r)]1/2

= −4π

h3
(2m)3/2V (r)

∫
ds

V (r)
s1/2

= 8π

3h3
(2m)3/2[E − V (r)]3/2 (5.8)

showing that the nonlinear Thomas–Fermi result thereby follows.
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To conclude this section, we note that the result of Friedel [16] for a periodic (p) lattice
with local density ρp(r, E) follows similarly from equation (5.1) by semiclassical arguments,
and prompted by the TF form (5.8) we can write

ρp(r, E) = ρp(r, E − V (r)). (5.9)

Stoddart et al [18] have proposed to extend equation (5.9) by avoiding the appearance of the
‘bare’ potential V (r), replacing it by a function g1(r, E) which is approximated by integrals
involving V (r) to first order and the off-diagonal generalization γp(r1, r2,E) of ρp(r, E).

However, we shall not give further details here, the interested reader being referred to the
original study [18].

6. Summary and future directions

We have been concerned here with nonlinear scattering from a localized potential V (r). The
major findings of the present study are dominantly concerned with the central potential V (|r|)
introduced into an initially uniform Fermi gas. In particular, figure 1 shows the electron density
for s-states only generated by the repulsive exponential potential V (r) = |A| exp(−cr) for
given A and c, and for three different values of the Fermi wave number, corresponding to
k = 1/4, 1/2 and 1 respectively. For each case the exact s-wave density is shown in the
solid curves. The dots in figure 1 represent an ‘intuitive’ asymptotic form in equation (2.6),
in which one merely has the r-space dependence of the s-wave component of the free Fermi
gas corresponding to V (r) = 0, but now phase-shifted by δ0 as indicated. This form is found
numerically to fit the exact s-wave densities at large r, the scale being correctly determined
when the constant in equation (2.6) is chosen to be inversely proportional to k.

The s-wave density ρs(r, k) for the exponential potential constitutes an exact summation
in terms of Bessel functions of the March–Murray perturbation series when analysed into
partial wave components. The corresponding Dirac density matrix can be utilized to calculate
the kinetic energy density ts(r, E) relative to the Fermi gas value t0s(r, E), which is a sum of
the Stoddart–March perturbation series [20] when the s-wave is extracted.

Some attention has finally been given to treating a localized potential introduced into an
originally periodic metallic lattice. The result of ZNE is the starting point here, and the simplest
of the findings in section 4 is the case when V (r) varies by but a small fraction of itself over
a characteristic de Broglie wavelength for an electron at the Fermi surface. Then the simplest
approximation, namely that of Friedel [16], generalizes the Thomas–Fermi approximation to
give back the periodic density ρp(r, E) of the periodic lattice when V (r) is switched off. In
turn, this result is related to the theorem of ZNE. The fully quantum-mechanical defect centre
models introduced by Koster and Slater [6] and by Beeby [7] are shown to fit into the general
framework discussed here, and this allows a little more insight to be gained as to their final
results and particularly to the appearance in both models of the Hilbert transform of the density
of states.

As to future directions, two-dimensional electron gases are of considerable current interest
for condensed-matter physics. Therefore, in an appendix, the March–Murray approach is
reformulated in two dimensions, the exponential potential again affording a useful model, in
the plane of the two-dimensional electron assembly. For the future, to treat a point charge,
with appropriate screening, both in and above such a two-dimensional Fermi gas, has potential
for interesting physical applications, including stopping power [22], referred to already in
section 3.
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Appendix A. Low-dimensional Fermi gases with model localized potentials

A.1 Two-dimensional models

In two dimensions, the Fermi gas corresponds to a canonical density matrix C0(r, r′, β)

given by

C0(r, r′, β) = 1

a

∑
k

exp(−ik · r) exp(ik · r′) exp(−βk2/2) (A.1)

where a is the normalization area of the wavefunction exp(ik · r). Replacing the summation
by an integration readily yields

C0(r, r′, β) = 1

2πβ
exp

(
−|r − r′|2

2β

)
. (A.2)

The Laplace transform with respect to β (→ E) yields the result [21]

LC0 = G0(r, r′,−E) = K0(
√

2E|r − r′|) (A.3)

where K0 is the modified Bessel function.
Hence, changing E to −E in the argument of K0 in equation (A.3) yields the off-diagonal

local density of states N0(|r − r′|, E) in the two-dimensional Fermi gas, from equation (1.1),
which is true in d dimensions. Thus, to first order in a localized potential V (r), we find

G = G0 +
∫

G0V (r′)G0 dr′ (A.4)

and hence the change �N(r, E) in the local density of states is evidently

�N(r, E) = − 1

π
Im [G − G0]

= − 1

π
Im

∫
G0V (r′)G0 dr′. (A.5)

Presumably, for free electrons in two dimensions, N0(|r − r′|, E) must become a constant as
r′ → r, since the areal density ρ0 ∝ πk2 = 2πE and hence

∂ρ0

∂E
= constant. (A.6)

A.2 One-dimensional delta function model

Finally, we consider a scaled potential λV (x) introduced into an initially uniform one-
dimensional Fermi gas. Adapting the integral equation form of the Bloch equation satisfied
by the canonical density matrix C to one dimension, one readily finds

C(x, x ′, β) = C0(|x − x ′|, β) −
∫ β

0
dβ1

∫ ∞

−∞
dx1 C0(|x − x1|, β − β1)λV (x1)C(x1, x

′, β1)

(A.7)
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where the completeness theorem for the one-electron eigenfunctions is now subsumed into
equation (A.7).

For the admittedly simple case when

λV (x) → λδ(x) (A.8)

equation (A.7) becomes

C(x, x ′, β) = C0(|x − x ′|, β) − λ

∫ β

0
dβ1 C0(|x|, β − β1)C(0, x ′, β1). (A.9)

Taking the Laplace transform with respect to β then yields

LC(x, x ′, β) = LC0(|x − x ′|, β) − λLC0(|x|, β)LC(0, x ′, β). (A.10)

The special case of equation (A.10) corresponding to x = 0 evidently reads

LC(0, x ′, β) + λLC0(0, β)LC(0, x ′, β) = LC0(|x ′|, β) (A.11)

or

LC(0, x ′, β) = LC0(|x ′|, β)

[1 + λLC0(0, β)]
. (A.12)

Referring to equation (A.10) and using equation (A.12) in the final form, one finds

LC(x, x ′, β) = LC0(|x − x ′|, β) − λ
LC0(|x|, β)LC0(|x ′|, β)

[1 + λLC0(0, β)]
(A.13)

where

C0(x, x ′, β) = exp

[
−|x − x ′|2

2β

]/
(2πβ)1/2. (A.14)

Performing next the Laplace inversion of equation (A.13) yields

C(x, x ′, β) = exp[−|x − x ′|2/2β]

(2πβ)1/2

− λ exp(λ|x − x ′|) exp(λ2β/2) erfc(λ
√

β/2 + |x − x ′|/
√

2β)

+
λ

2

[
erfc

( |x − x ′|√
2β

)
− erfc

(
(|x| + |x ′|)√

2β

)]

+
λ

2
exp(λ2β/2) exp[λ(|x| + |x ′|)] erfc(λ

√
β/2 + (|x| + |x ′|)/

√
2β) (A.15)

which, in the context of the ZNE theorem, is interesting in that the λ-dependence is quite
explicit. The diagonal element x ′ = x of equation (A.10) yields the so-called Slater sum
S(x, β) as

S(x, β) = 1

(2πβ)1/2
− λ exp(λ2β/2) erfc(λ

√
β/2) +

λ

2

[
1 − erfc

(
x

√
2

β

)]

+
λ

2
exp(λ2β/2) exp(2λ|x|) erfc(λ

√
β/2 + (|x| + |x ′|)/

√
2β) (A.16)

so

S(0, β) = 1

(2πβ)1/2
− λ

2
exp(λ2β/2) erfc(λ

√
β/2). (A.17)
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Appendix B. Nonlinear s-wave phase shift δ0(K) for an exponential potential

In the body of the text, we gave some emphasis to exact nonlinear properties of the exponential
potential, which will be convenient to write in the form

V (r) = −A exp(−µr). (B.1)

Putting P = rR, where R is the radial s-state wavefunction, one then has

d2P

dr2
+ [k2 + A exp(−µr)]P = 0. (B.2)

Making the independent variable x, as defined by

x = 2
√

A

µ
exp

(
−µr

2

)
(B.3)

equation (B.2) becomes

d2P

dx2
+

1

x

dP

dx
+

(
1 +

4k2

µ2x2

)
P = 0. (B.4)

From [23], the general solution is

P = CJ2ik/µ(x) + DJ−2ik/µ(x). (B.5)

The physical solution P = rR must vanish at r = 0, corresponding from equation (B.3) to
x = 2

√
A/µ. After some manipulation using the asymptotic form of P as r → ∞, namely

P ∼ C{(exp(−µr/2)
√

A/µ)2ik/µ/(1 + 2ik/µ)}
+ D{(exp(−µr/2)

√
A/µ)−2ik/µ/(1 − 2ik/µ)} (B.6)

the s-wave phase shift can be extracted as

δ0 = arg[(1 + 2ik/µ)(
√

A/µ)−2ik/µJ2ik/µ(2
√

A/µ)]. (B.7)

This result (B.7) is illustrated in figure 2. It can be seen from equation (B.7) that
δ0 = δ0(k/µ,

√
A/µ), and we have plotted equation (B.7) as a function of k in the figure, for

several values of
√

A/µ characterizing the exponential potential (B.1).
It is finally of interest to note that the Born (B) approximation to δ0(k) is given by

δB
0 (k) = −2mk

h̄2

∫ ∞

0
V (r)

( π

2kr

)
[J1/2(kr)]2r2 dr (B.8)

and this is also plotted in figure 2 for comparison with the smallest value of
√

A/µ shown
there.

Appendix C. Kramers–Krönig-type relations, and connection between ZNE theorem
and force–force correlation formula

We were motivated by the account in the book by Rickayzen [24] in constructing this appendix
involving Kramers–Krönig-like relations. The aim is to show a connection between the ZNE
theorem (5.1) and the force–force correlation function (3.1) when γ is replaced by the free-
electron limit γ0. Starting with the latter quantity 〈F · F〉 we have the result that

∂γ (r1, r2, E)

∂E
= 1

π
Im G(r1, r2, E). (C.1)

This, in addition to knowledge of the one-body potential V (r), which of course is required
to generate either the Dirac density matrix γ or the Green function G in equation (C.1),
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Figure 2. The s-wave phase shift δ0(k) of equation (B.7) for the exponential potential V (r) =
−A exp(−µr), for several values of

√
A/µ; the Born approximation δB

0 (k) of equation (2.6)
is shown for comparison for the case A = 1, µ = 2.

one requires either (∂γ /∂E)2, or from the right-hand side of equation (C.1) alternatively
[Im G(r1, r2, E)]2. This latter quantity is to be contrasted next with what enters the ZNE
theorem, namely Im

(
G2

0

)
, where G0 is now the free-electron limit of G entering equation (C.1).

This, of course, even in the limit V → 0, means that whereas the force–force correlation
function is determined, but now only to O(V 2), by Im G0, one needs both the real and
imaginary parts of G0 in the ZNE theorem. But, via a Kramers–Krönig-type relation,
knowledge of the imaginary part of G0 is sufficient to calculate the real part of G0 (see
equation (C.5))

Let us illustrate specifically the free-electron case by reference to equation (C.1). Then

G0(r1, r2, E) = exp(i
√

2ER)

R
(C.2)

where R = |r1 − r2|. Hence

∂γ (r1, r2, E)

∂E
= 1

π

sin(
√

2ER)

R
. (C.3)

Taking the limit R → 0, we recover the well-known density of states (in three dimensions)
proportional to E1/2 for a free electron gas. With k = √

2E, we can show that

1

π
P

∫ ∞

−∞

sin(k′R)

R(k − k′)
dk′ = cos(kR)

R
(C.4)

and

1

π
P

∫ ∞

−∞

cos(k′R)

R(k − k′)
dk′ = − sin(kR)

R
(C.5)

and thus knowledge of the real part of G0(r1, r2, E) is sufficient to determine the imaginary
part, and vice versa.
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